Machine Learning Rhein-Neckar Meetup

An Overview of Outlier Detection Techniques and Applications

Ying Gu connygy@gmail.com 28.02.2016

Anomaly/Outlier Detection

What are anomalies/outliers?

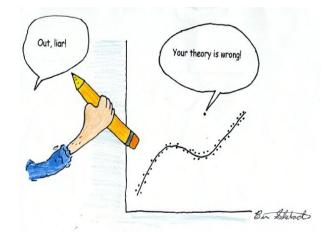
- The set of data points that are considerably different than the remainder of the data anomaly
- On a scatter plot of the data, they lie far away from other data

Goal of anomaly detection

• Find objects that are different from most other objects

Anomaly detection, deviation detection, outlier detection,

novelty detection...



Applications

- Fraud Detection
- Intrusion Detection
- Ecosystem Disturbances
- Medicine

30210111101

Definition

Definition of Hawkins [Hawkins 1980]

 "An outlier is an observation that differs so much from other observations as to arouse suspicion that it was generated by a different mechanism"

Statistics-based intuition

- Normal data objects follow a "generating mechanism", e.g. some given statistical process
- Abnormal objects deviate from this generating mechanism

Cause of Anomalies

Data from different classes

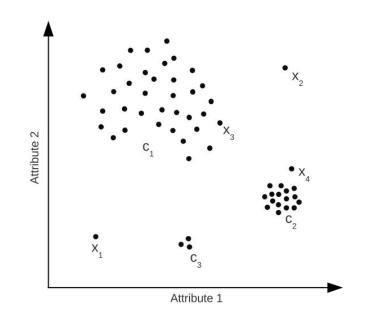
Causes of Anomalies

Natural Variation

- Data Measurement and Collection Errors

Type of Anomalies

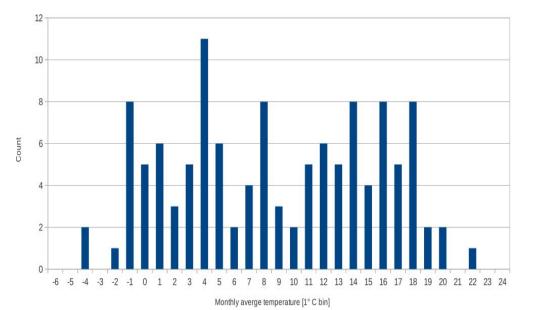
- Point Anomalies
- Contextual Anomalies



The two anomalies x_1 and x_2 are easily identifiable, x_4 could also be an anomaly with respect to its direct neighborhood whereas x_3 seems to be one of the normal instances.

Example of Contextual Anomalies

Measurements of the average monthly temperatures in Germany over ten years from 2001 to 2010. (N=120 measurements).

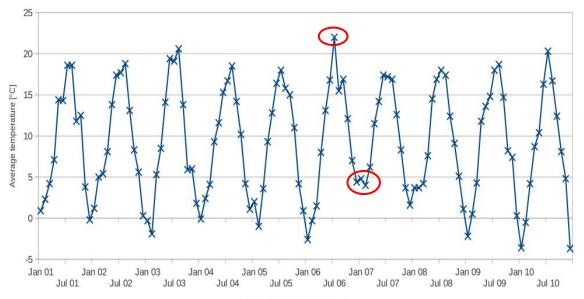


A histogram plot of the average monthly temperatures in Germany from 2001 to 2010. One obvious anomaly is one very hot month in the bin 22-23°C

Example of Contextual Anomalies

Take the context into account.

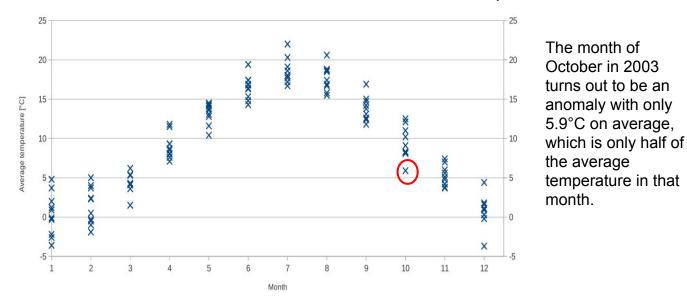
The following figure plotted the measurements with respect to the context time



We can not only see the previously mentioned extreme outliers, but also two very mild winters in 2006 and 2007, which we could not observe previously.

Example of Contextual Anomalies

We could add the month as a numerical attribute. A point anomaly detection algorithm would now be able to detect a few more outliers besides the extreme temperature values



Type of Anomalies

Collective Anomalies

A combination of multiple instances forms an anomaly, whereas each single one of these contributing instances is not necessarily an anomaly in itself. They are the most complex type of anomalies.

Approaches to Anomaly Detection

- Model-based Techniques
 - Build a model for the data, the anomalies do not fit the model well.
 - statistic methods, classifications
- Proximity-based techniques
 - Define a proximity measure between objects, anomalous objects are those that are distant from most of the other objects. Also called distance-based outlier detection techniques.
 - k-NN based methods
- Clustering-based techniques
 - Outlier detection can be regarded as complementary of clusterings.
 - k-Means

The Use of Class Labels

Supervised anomaly detection

Uses normal instances and anomalies for training and testing. The model typically classifies the instances into two classes

Semi-supervised anomaly detection

Uses only normal data for training. The model should be able to detect deviations in the test data from that norm.

The Use of Class Labels

Unsupervised anomaly detection

Uses no labeling information at all. The algorithm only takes intrinsic information of the data into account in order to detect anomalous instances being different from the majority.

Output

- Binary class label, normal or anomalous (Early years)
- Numerical output (anomaly score), can be converted to binary output
 - Used by semi-supervised and unsupervised algorithms
- The interpretation of outlier score depends on the algorithm.
 - Some algorithms: only an ordering according to the scores make sense(ordinal scale)
 - Other algorithms: reference point, *1.0* is normal behavior
 - Probability (not possible with most algorithms), so the scores can be compared by different data set.

Approach

- Detecting Outliers in Gaussian Distribution
- Gaussian Distribution has a nice property:
 - $p(x > \mu + \sigma)$ and $p(x < \mu \sigma) = 31.73\%$
 - $p(x > \mu + 2\sigma)$ and $p(x < \mu 2\sigma) = 4.5\%$
 - $p(x > \mu + 3\sigma)$ and $p(x < \mu 3\sigma) = 0.27\%$
- In practice, define:
 |x|>μ+2σ, the x is an anomaly.
 - This is the reason why outliers should not more than 5%



Approach - k-NN Distance-based

- Based on the distances to the neighbors
 - The distance to the k-th Nearest-Neighbor is computed
 - The average distance to all the k-Nearest-Neighbors is used as a score

$$score_{knn}(x) = \frac{\sum_{o \in N_k(x)} d(x, o)}{|N_k(x))|}$$

 $N_{k}(x)$: the k-nearest neighbor set

- \blacktriangleright d(x,o): the distance between x and o
- This approach is preferable, because it results in a much more robust local density estimation

Evaluation ROC Curve (Receiver Operating Characteristic)

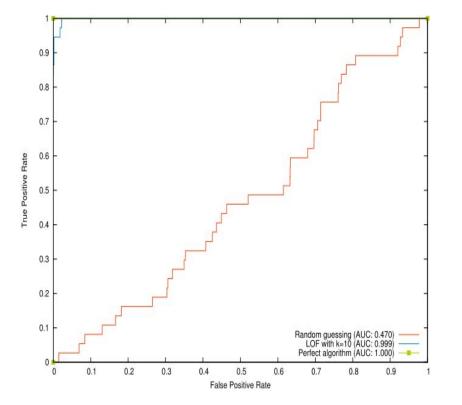
ROC curve can also be used in the evaluation of the algorithms Computation is the same as the typical ROC computation :

- TPR: True Positive Ratio
- FPR: False Positive Ratio

Notice: The different rates are computed by varying the threshold of the outlier score.

AUC (area under curve) is the integral of the ROC. It is the probability that an anomaly detection algorithm will assign a randomly chosen normal instance a lower score than an randomly chosen outlying instance. Hence, the AUC is a good good quality measure, the higher the value, the more likely it is that anomalies are detected.

Example of ROC Curves



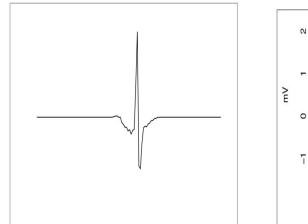
The blue ROC originates from the LOF algorithm applied on the 2D artificial dataset

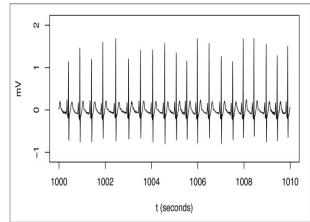
The red curve represents a random guessing approach and the green curve is the result of a perfect algorithm.

Time Series Anomaly Detection

Anomalies are defined not by their own characteristics, but in contrast to what is normal.

-- Ted Dunning



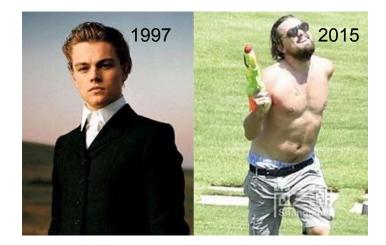


Methods:

- statistic methods
- Turn the time series into points

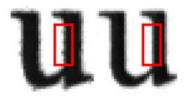
Research

- Speed up the Algorithms
- Big Data (Cloudera Hadoop, Apache Flink)
- Evolving Algorithms
 - Time can changing everything



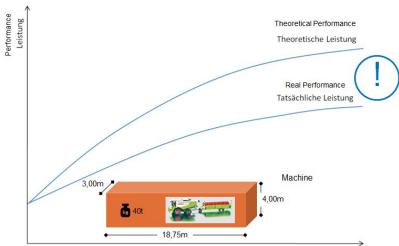
Projects (DFKI)

1. Find the faking documents



- 2. Intrusion Detector (with Telecom)
- 3. Indoor location tracking (with VW)

- 4. Machine Learning for Self-propelled Harvesters (with CLAAS)
 - a. Fault Detection and Maintenance Studies
 - b. Productivity Studies



Outlier Detection with RapidMiner

Dataset 1

DFKI-artificial-3000: download: http://www.madm. eu/_media/downloads/dfki-artificial-3000unsupervised-ad.zip

3000 Records, 2 attributes

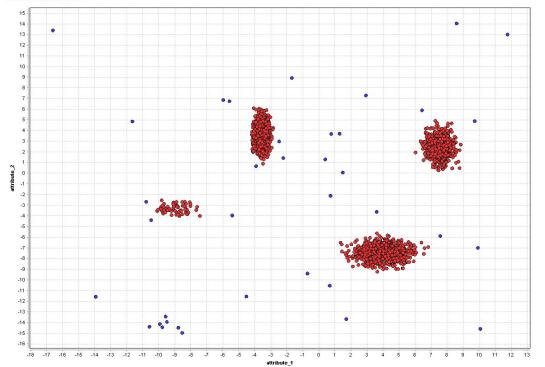
outlier_label:

- outlier (37)
- normal (2963)

Row No.	outlier_label	attribute_1	attribute_2	
1	outlier	-9.799	-14.403	
2	outlier	-10.606	- <mark>14</mark> .356	
3	outlier	-9.959	- <mark>14</mark> .101	
4	outlier	- <mark>9</mark> .516	- <mark>1</mark> 3.903	
5	outlier	-8.798	-14.451	
6	outlier	-8.556	-14.934	
7	outlier	-9.596	- <mark>13.4</mark> 03	
8	outlier	-3.946	0.692	
9	outlier	-5.997	6.899	
10	outlier	-11.670	4.890	
11	outlier	-2.256	1.458	

Dataset 1

outlier_label 💿 outlier 💿 normal



Dataset 2

Diagnose breast cancer

Download: <u>https://dataverse.harvard.</u> edu/api/access/datafile/2711924? format=original

30 Attributes, 367 Records Label:

- o = Outlier (Malignant, 10)
- n = Normal (Benign, 357)

Row No.	att31	att1	att2	att3	att4	att5
1	0	17.990	10.380	122.800	1001	0.118
2	0	20.570	17.770	132.900	1326	0.085
3	0	19.690	21.250	130	1203	0.110
4	0	11.420	20.380	77.580	386.100	0.142
5	0	20.290	14.340	135.100	1297	0.100
6	0	12.450	15.700	82.570	477.100	0.128
7	0	18.250	19.980	119.600	1040	0.095
8	0	13.710	20.830	90.200	577.900	0.119
9	0	13	21.820	87.500	519.800	0.127
10	0	12.460	24.040	83.970	475.900	0.119
11	n	13.540	14.360	87.460	566.300	0.098
12	n	13.080	15.710	85.630	520	0.107
13	n	9.504	12.440	60.340	273.900	0.102
14	n	13.030	18.420	82.610	523.800	0.090
15	n	8.196	16.840	51.710	201.900	0.086
16	n	12.050	14.630	78.040	449.300	0.103